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I. INTRODUCTION

This is a short concise introduction to the concept of a lattice Green function (LGF). The LGF
is the discrete space counterpart to the more familiar continuous space Green function that has
become such a versatile tool in many areas of theoretical physics. Some familiarity with the
more common uses of Green functions, such as in the solution of partial differential equations,
is helpful in what follows but not strictly necessary. Excellent introductions to Green functions
can be found in Barton [1], Duffy [2], and Economou [3]. The LGF is often used in condensed
matter, and statistical physics (random walk theory). A good discussion of some uses of the
LGF can be found in Cserti [4]. It also appears, although most often not by name, when the
finite difference approximation is used to solve partial differential equations. It is through this
application that we will introduce the concept of a LGF. In particular we will use the LGF to show
how the discretized Poisson equation can be solved in an infinite cubic (3 dimensional) and square
(2 dimensional) lattice. Itis perhaps appropriate to introduce the LGF in this way since solving the
Poisson equation was George Green’s original motivation for developing his eponymous functions
[5]. A great deal of research has been done on lattice Green functions over the last fifty years or
so and other introductions do exist, see for example Katsura et al [6] and the two recent papers by
Cserti [4, 7]. The hope is that the simple examples given in this introduction will be accessible
to the widest possible audience. The only knowledge assumed on the part of the reader is some

familiarity with Dirac vector space notation and an understanding of eigenvalues and eigenvectors.

. THREE DIMENSIONAL DISCRETE POISSON EQUATION

For the cubic lattice let1, X2, andXs be a set of orthogonal unit vectors, so thai; = (i, j).
If the lattice spacing is then the primitive lattice vectors ag = aX; and all points in the lattice

are given by the lattice vectors
M =ma;+nyd+n3ds n =integer (1)

Using this notation, the Poisson equation on a cubic lattice takes the following form.
3

Zl[¢(?n+3i) —20(Tn) + @(Tn — &)] = () @)

i=
We will refer to this as the discrete Poisson equation or DPE from here on. To fully define the

equation, the size of the lattice and the boundary conditions need to be specified. These are
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however not important for the current discussion and will be specified later. In the limit as the

lattice spacing goes to zero this becomes the continuous Poisson equation.

3 20T
s =D ®

2
Eg. 2 can be regarded as a finite difference approximation of eq. 3f\rith = azg(r;).

Much of the following development will be in terms of Dirac vector space notation. In this
notation the DPE is

Lj@) = [f) (4)
HereL denotes the lattice Laplacian operator.

If we let |n) denote the lattice basis vector associated with the lattice goiheén(n|@) = @(Ty)

and(n|f) = f(ry). In the lattice basis, the vectog and|f) are

@)= Im{nle) = @fn)[n) (5)
[£)=> Im{nlf) => f(tn)In) (6)

andeq. 4is
> (HL[n)(n[e) = (I[f) (7)

n

In terms of matrix and vector elements this becomes

S Lin@(Tn) = (1) (8)
n
The matrix elementk), can be identified by comparing eq. 8 with eq. 2.

—65(1,n)
Lin=1¢ 1 if |Fy—Ti| =a 9)

0 otherwise

This can also be expressed as follows.
3
Lin = —63(r7,Tn) + Zl[é(?l +&;,Tn) + () —&;,Tn)] (10)
i=
Now we want to solve eq. 4 fdp). At least formally, the solution is

@) =L M) (11)



The problem therefore involves findidg ! = —G, where the operato® is what we will call
the lattice Green function. We can get an expression for the matrix eleme@idvpfusing an
eigenvector expansion. It is easy to show iBandL have the same eigenvectors, andl i an
eigenvalue ot then—1/A is an eigenvalue oB. The first step then is to find the eigenvalues and
eigenvectors of.

Until now, no assumptions have been made about the size of the lattice or the boundary condi-
tions. We begin by assuming a finite lattice Wilpoints in the directiodand periodic boundary
conditions. Periodic boundary conditions mean that for any lattice funetity), the following
will be true

V(T +Nid) =v(fn) =123 (12)

With these assumptions the eigenvalue problenifoan now be solved. Write the eigenvalue
equation forL as follows.

In the lattice basis the eigenvalue equation is
> (L) (n[Vim) = Am(l{Vim) (14)
n

or in terms of matrix elements
z LinVim(Th) = AmVim(T)) (15)
n

Using eq. 9 for the matrix elementsofeq. 15 becomes.

Vin(T) +81) +Vm(T) —az) +Vm(T) +82) +Vm(T) — &2) +Vm(T) +83) +Vm(T| —83) —6Vm(T1) = AmVim(T})
(16)
We will now show that periodic boundary conditiongy(r| + N;&) = vim(T}), require thati,(r))

have the following form

V(1) = Adkn (17)
We set the vectoky, equal to
LM Mpo Mg
=—b1+—by+—b 18
Km N, 1+N2 2+N33 (18)

wherem =0,1,2,...,N, — 1 and the vectork; are reciprocal lattice vectors equal to

o 21,
b = Exi (19)



so that we have
bi - & = 2 (i, j) (20)

With this definition ofkn it is easy to show that eq. 17 obeys the periodic boundary conditions

Vin(T +Nid) = Adkni gkmNa _ adknTi g2 (21)

= Vm(T)
The constanA is chosen so that the eigenvector is normalized.
(Vm|Vm) = Z(Vm“m |Vim) (22)
= ZAe‘iRm'r'AéRm'?'
= ANiNaN3

therefore leA = 1/,/N1N2N3. We can now find the eigenvalues by substituting eq. 17 into eq. 16.

This gives
Am = 2(cosl?m-al+cosl?m-éz+co§?m-ag—3> (23)
B c2T[rn1 CZT[mz 213
=2 (cog Ny + cos No +cos Na 3)

Now that the eigenvalue problem has been solved we can expeesiG = —L 1 in terms of the

eigenbasis. Fdr we have

m
The matrix elements df are then
m
1 -
_ km-(F1—Tn)
N1N2N3 ;)\me'

It is not too difficult to show that this equation gives the same results as in eq. @ ForlL !

we have
[Vim) (Vim|

G=-§ —— 26
> (26)

and the matrix elements are

jkm (i —Tn)
Gn=-Y (Vm){Vm[n) 1 e 27)
& Am NiN2N3 4 Am



Note thatG, depends only on the differente-r,, so thatG has a circulant matrix representation.
Letrp =T —Ththen

fp = (li—m)ar1+ (lo—np)d + (I3 —n3)ds (28)
= P181 + P2dz + pP3ds
and
K- Tp = 2Pt | ppT2P2 , 5 TBPs (29)
Ny Ny N3

Using this notation, eq. 27 becomes

.2nm1pl -2TI.TT'|2p2 .2r|m3p3
1 MN-1N-1Ns-1 € N g N g N

Gin=06(Tp) = ———
In (To) N1N2N3 Z Z z <3—coszm1—coszNL';‘2—C052NL?3)

(30)

m=0my;=0nmz=0 2 N_l

Eq. 30 gives the matrix elements of the lattice Green function of the DPE for a finite lattice with
periodic boundary conditions. Note that this is essentially a Fourier series expansion of the matrix
elements which is possible because of the periodic boundary conditions. For other boundary
conditions such a&(N;&) = 0, the expansion would have to be in terms of a sine series.

We will now go from a finite lattice to an infinite lattice by lettil — o, i = 1,2,3. This
means going from the Fourier series representation of eq. 30 to a Fourier transform representation

of the matrix elements. In eq. 30 let

21m
=N (31)
Whenmy is incremented by 1 the changexns
21 1 A
Axi = S — = 2
X N or N 2m (32)
The summations in eg. 30 can then be written as
o 2m(1— &)
g N1 N AX
— = — (33)
N mzzo X.ZO 21
and in the limitN; — oo the summation becomes an integral.
1 21
— dx 34
T (34)

For an infinite lattice eq. 30 then becomes

o7 1 2 p2m p2m @X1P1gX2P2 dX3P3 dxedsod 35
(p)_(2n)3/o /o 0 2(3— CoSK — CoS — cosxg) e (35)
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Note that the integrand has a period2ofin each of the variables so that the limits of integration

can be changed to the more symmetric

G(7 1 T 1 ,T0 gX1P1gX2P2 X33 dr o
( p)_ <2T[)3 /—n/—n/—n2(3—C09(1—COS>(2_COS>(3> X10X0X3 ( )

The integral can be further simplified by looking at the parity properties of the integrand. Multi-
plying the€”iPi = cosx;p; + i sinx; p; factors and leaving out the resulting odd terms reduces the

integral to

1 ™ /T T CcoSXg P COSXo P2 COSX3P3
G = — dx;dxd 37
(P, P2, Ps) 2T[3/o /o /o 3 cosX, — COSKp — CosKg L 208 (37)

Clearly G is a function only of the parameteps, p2, andps and it is an even function of these
parametersG is also symmetric under any permutation of the parameters. All the unique values
of G are therefore contained in the wedge> p> > ps > 0.

We will now derive a recurrence equation that the matrix elemen&aifey. By definition we

haveLG = —I which in the lattice basis is

> (HLn)(n[GIm) = —(I|m) (38)
ZLInGnm = —9(I,m)

S L(Fi ~Fn)G(Fa —Fm) = —3(I,m)

n
Substituting in eq. 10 fok;, gives

—6G(1 —Fm) + i [G(Fi + & —Tm) + G(Fi —& —Fm)] = —0(I, m) (39)

Now using the notatiory —Tm = (I1 —m)d; + (I — mp)dz + (I3 — mg)dz = p1d1 + p2dz + psds,

eg. 39 becomes

—6G(p1, P2, P3) +G(P1+1, P2, P3) +G(p1—1, P2, P3) +G(p1, P2+1, p3) + G(pP1, P2 —1, p3) + G(P1, P2, P3+1) -
(40)

Eq. 40 simplifies considerably for some specific valuepfp,, andps. In particular forp; =

p2 = p3 = 0 we get

G(1,0,0) = G(0,0,0) — (41)

1
6
Where the symmetry properties of G have been usedGi#,0,0) = G(—1,0,0) = G(0,1,0) =
G(0,—-1,0) = G(0,0,1) = G(0,0,—1). Letting p1 = p2 = p3 = pin eg. 40, we have

2G(p,p,p) =G(p+1,p,p)+G(p,p,p—1) (42)
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Lettingpr = p, p2= p3=0in eq. 40 gives

G(p+1,0,0) =6G(p,0,0) —4G(p,1,0) —G(p—1,0,0) (43)
Lettingpyr = p2=p, p3=01in eq. 40 gives

3G(p, p,0) = G(p+1,p,0)+G(p,p—1,0) + G(p, p, 1) (44)
In general forpy =1, p2 = m, p3 = nwith |, m, andn not all equal to zero, we have

6G(I,mn)=G(I+1,mn)+G(I-1,mn)+G(I,m+1,n)+G(I,m—1,n)+G(I,mn+1)+G(I,mn—-1)
(45)
Additional recursion equations were developed by Duffin and Shelly. These recursion equa-
tions, along with some of those given above and some relations due to Horiguchi and Morita,
allowed Glasser and Boersma to find an expression for the general matrix el@thgntn) that

involves knowing onlyG(0, 0,0), which is given by the integral

1 ym o m dx dxodxs
G(0,0,0) = — 46
(0,0,0 21'[3/0 /o /o 3 — COSX{ — COSX2 — COSX3 (46)

This integral was first evaluated by Watson in terms of complete elliptic integrals. It was then

shown by Glasser and Zucker to be expressible in terms of gamma functions as

V6 _ (1 5 7 11
=——=IMN{=IT{= )= |F({= a7
©(0,0.0) 96 <24) (24) (24) (24) (47)
An identity due to Borwein and Zucker allows this to be simplified to
V3-1_,(1\ /11
G(0,0,0) = 053 r (ﬁ)r (ﬂ) (48)

Joyce [8] has also developed some recursion equations that @lllow, n) to be calculated for
arbitrary values of,m n. He arrives at the same formula as Glasser and Boersma via a different
method and also derives an asymptotic formula@dr,m,n). In some very recent work, Joyce [9]
gives some formulas that allow the diagonal eleme@ts, n,n), to be calculated very accurately

for arbitrary values of. He also gives asymptotic formulas fGfn, n,n).

. TWO DIMENSIONAL DISCRETE POISSON EQUATION

The same procedure given above can be used to find the lattice Green function for the two

dimensional Poisson equation. In this case the lattice vectors are
Tn = Nydy + Npdy (49)
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The matrix elements of the lattice Laplacian are

0 otherwise

Which can also be expressed as
Lin = —43(17,Tn) + &(T +&1,Tn) + &(T — &, Tn) +(T| + 8, Th) + (T} — &2, Tn) (51)

The eigenvector expansion of the lattice Laplacian matrix elements are

1 -
Lin = —— 5 A @km(fi—Tn) 2
In NlNZ% meI (5 )
K= Wi M m= integer (53)
N1 N>
Am = 2<co§?m-él+co§2m-az—2> (54)
B 21y 21D
=2 (cos Ny +Ccos No 2)

The matrix elements of the lattice Green function are expanded in the eigenbasis as

o 1 gkm-(Fi—Tn)
In = — N1N2 % )\m (55)
which if we letf, =T} — Ty, can be expressed as
.2Trm1p1 .2nm2p2
1 M-1Ne-1 =Rt TR
Gin = G(Fp) S (56)

NN mlz—owz—o 2 (2 - cosz,\]L'l‘l — coszNL';‘z)

For the infinite lattice this becomes

1 /™ [T cOSX1pP1COSX2P2
G(fp)ZG(pl,pz)Zz—T[z/() /0 2—COSX1—COSX2XmdX2 (57)

G is an even function of the parametgrgand py, and it is symmetric under any permutation of

the parameters. All the unique values®tre therefore contained in the wedge> p, > 0.
There is one problem with eq. 57. The integral is divergent for all valugg ahdp,. We can

fix this by using the shifted Green function.

1 — CcoSX1p1COSX22
2 — COSX1 — COSXp

1 T
(P, P2) = G(0.0) ~ G(p1.p2) = 55 [ [ dace  (59)
= Jo Jo
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The integral now exists for all values @i and pp. Using g(p1, p2) instead ofG(pz, p2) will
provide a solution to the DPE as long as the sum of the source tdiimg, over all the lattice
sites is equal to zero. To demonstrate this, first note that the solution to the DPE in teBis of
given by

@) =—> Ginf(th) (59)
Now if we have i

S f(fn) =0 (60)

n
then eq. 59 can also be written as

®T1) = (G —Gin) f(Th) (61)

n
whereG) = G(f} — 1) = G(0,0), Gin = G(} — ) = G(p1, p2) andG;; — G, = gin. The solution

to the DPE in terms of the shifted Green function is then

9(71) = ¥ anf (Fn) (62)

wheregin = g(fi —Tn) = g(p1, P2) = G(0,0) — G(p1, P2).

From the above discussion, you can see that in an unbounded two dimensional space or lattice
the DPE is only solvable if the sources add up to zero. A physical example of this is in two di-
mensional electrostatics. The charge units in two dimensional electrostatics are actually parallel,
infinite line charges embedded in a three dimensional space. For a single line charge, the potential
at any finite distance from the line will be infinite. For two lines of opposite charge the potential is
finite in the space surrounding the lines. Note that we are assuming an unbounded space with the
zero point potential at infinity. Another example comes from the theory of random walks. In one
and two dimensions a random walker is guarranteed to eventually return to its starting position,
while in three dimensions it may never do so. To see how this is related to the DPE, see the excel-
lent book by Doyle and Snell [10] on random walks in electrical networks. For another example
see Cserti’'s paper [4] on using the lattice Green function to calculate the resistance between two
points in an infinite network of resistors.

We will now present some recurrence equations that the matrix elements of the Green function
obey. As in the three dimensional case these can easily be found from the defining tekation

—1. This gives the general recurrence

—4G(p1, p2) +G(p1+1,p2) + G(p1—1, p2) + G(p1, p2+ 1) + G(p1, p2 — 1) = —8(p1,0)d(p2,0)
(63)
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For p1 = p2 = Owe have

G(0,0) — G(1,0) = % (64)
Forp1 = p#0, p2 = 0we have
4G(p,0) =G(p+1,0)+G(p—1,0)+2G(p,1) (65)
For p1 = p2 = p# 0 we have
2G(p, p) = G(p+1,p) +G(p,p—1) (66)
And in general forp; = | # 0 andp2 = m=# 0 we have
4G(I,m) =Gl +1,m) +G(I —1,m) +G(I,m+1)+G(I,m—1) (67)
An additional recurrence equation for the diagonal elements is [11]
(2n+1)G(n+1,n+1)—4nG(n,n) 4+ (2n—1)G(h—1,n—1) =0 (68)

Since the coefficients in each of these equations adds to zero you can see that the shifted Green
function,g(p1, p2) = G(0,0) — G(p1, p2) must obey the same recurrence equations. These equa-

tions forg are listed below
1

91,0 =, (69)

49(p,0) =9(p+1,0)+9(p—1,0) +29(p,1) (70)

29(p,p) =9(p+1,p) +9(p,p—1) (71)

49(I,m) =g(l +1,m)+g(l —1,m)+g(l,m+1)+g(l,m—1) (72)
(2n+1)g(n+1,n+1) —4ng(n,n)+ (2n—1)g(n—1,n—1) =0 (73)
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