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I. INTRODUCTION

This is a short concise introduction to the concept of a lattice Green function (LGF). The LGF

is the discrete space counterpart to the more familiar continuous space Green function that has

become such a versatile tool in many areas of theoretical physics. Some familiarity with the

more common uses of Green functions, such as in the solution of partial differential equations,

is helpful in what follows but not strictly necessary. Excellent introductions to Green functions

can be found in Barton [1], Duffy [2], and Economou [3]. The LGF is often used in condensed

matter, and statistical physics (random walk theory). A good discussion of some uses of the

LGF can be found in Cserti [4]. It also appears, although most often not by name, when the

finite difference approximation is used to solve partial differential equations. It is through this

application that we will introduce the concept of a LGF. In particular we will use the LGF to show

how the discretized Poisson equation can be solved in an infinite cubic (3 dimensional) and square

(2 dimensional) lattice. It is perhaps appropriate to introduce the LGF in this way since solving the

Poisson equation was George Green’s original motivation for developing his eponymous functions

[5]. A great deal of research has been done on lattice Green functions over the last fifty years or

so and other introductions do exist, see for example Katsura et al [6] and the two recent papers by

Cserti [4, 7]. The hope is that the simple examples given in this introduction will be accessible

to the widest possible audience. The only knowledge assumed on the part of the reader is some

familiarity with Dirac vector space notation and an understanding of eigenvalues and eigenvectors.

II. THREE DIMENSIONAL DISCRETE POISSON EQUATION

For the cubic lattice let̂x1, x̂2, andx̂3 be a set of orthogonal unit vectors, so thatx̂i · x̂ j = δ(i, j).

If the lattice spacing isa then the primitive lattice vectors are~ai = ax̂i and all points in the lattice

are given by the lattice vectors

~rn = n1~a1 +n2~a2 +n3~a3 ni = integer (1)

Using this notation, the Poisson equation on a cubic lattice takes the following form.

3

∑
i=1

[φ(~rn +~ai)−2φ(~rn)+φ(~rn−~ai)] = f (~rn) (2)

We will refer to this as the discrete Poisson equation or DPE from here on. To fully define the

equation, the size of the lattice and the boundary conditions need to be specified. These are
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however not important for the current discussion and will be specified later. In the limit as the

lattice spacing goes to zero this becomes the continuous Poisson equation.

3

∑
i=1

∂2φ(~r)
∂x2

i

= g(~r) (3)

Eq. 2 can be regarded as a finite difference approximation of eq. 3 withf (~rn) = a2g( ~rn).

Much of the following development will be in terms of Dirac vector space notation. In this

notation the DPE is

L|φ〉= | f 〉 (4)

HereL denotes the lattice Laplacian operator.

If we let |n〉 denote the lattice basis vector associated with the lattice point~rn then〈n|φ〉= φ(~rn)

and〈n| f 〉= f (~rn). In the lattice basis, the vectors|φ〉 and| f 〉 are

|φ〉= ∑
n
|n〉〈n|φ〉= ∑

n
φ(~rn)|n〉 (5)

| f 〉= ∑
n
|n〉〈n| f 〉= ∑

n
f (~rn)|n〉 (6)

and eq. 4 is

∑
n
〈l |L|n〉〈n|φ〉= 〈l | f 〉 (7)

In terms of matrix and vector elements this becomes

∑
n

Llnφ(~rn) = f (~r l ) (8)

The matrix elementsLln can be identified by comparing eq. 8 with eq. 2.

Lln =





−6δ(l ,n)

1 if |~rn−~r l |= a

0 otherwise

(9)

This can also be expressed as follows.

Lln =−6δ(~r l ,~rn)+
3

∑
i=1

[δ(~r l +~ai ,~rn)+δ(~r l −~ai,~rn)] (10)

Now we want to solve eq. 4 for|φ〉. At least formally, the solution is

|φ〉= L−1| f 〉 (11)
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The problem therefore involves findingL−1 = −G, where the operatorG is what we will call

the lattice Green function. We can get an expression for the matrix elements ofG by using an

eigenvector expansion. It is easy to show thatG andL have the same eigenvectors, and ifλ is an

eigenvalue ofL then−1/λ is an eigenvalue ofG. The first step then is to find the eigenvalues and

eigenvectors ofL.

Until now, no assumptions have been made about the size of the lattice or the boundary condi-

tions. We begin by assuming a finite lattice withNipoints in the direction~aiand periodic boundary

conditions. Periodic boundary conditions mean that for any lattice functionv(~rn), the following

will be true

v(~rn +Ni~ai) = v(~rn) i = 1,2,3 (12)

With these assumptions the eigenvalue problem forL can now be solved. Write the eigenvalue

equation forL as follows.

L|vm〉= λm|vm〉 (13)

In the lattice basis the eigenvalue equation is

∑
n
〈l |L|n〉〈n|vm〉= λm〈l |vm〉 (14)

or in terms of matrix elements

∑
n

Llnvm(~rn) = λmvm(~r l ) (15)

Using eq. 9 for the matrix elements ofL, eq. 15 becomes.

vm(~r l +~a1)+vm(~r l−~a1)+vm(~r l +~a2)+vm(~r l−~a2)+vm(~r l +~a3)+vm(~r l−~a3)−6vm(~r l )= λmvm(~r l )

(16)

We will now show that periodic boundary conditions,vm(~r l +Ni~ai) = vm(~r l ), require thatvm(~r l )

have the following form

vm(~r l ) = Aei~km·~r l (17)

We set the vector~km equal to

~km =
m1

N1

~b1 +
m2

N2

~b2 +
m3

N3

~b3 (18)

wheremi = 0,1,2, . . . ,Ni−1 and the vectors~bi are reciprocal lattice vectors equal to

~bi =
2π
a

x̂i (19)
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so that we have

~bi ·~a j = 2πδ(i, j) (20)

With this definition of~km it is easy to show that eq. 17 obeys the periodic boundary conditions

vm(~r l +Ni~ai) = Aei~km·~r l ei~km·Ni~ai = Aei~km·~r l ei2πmi (21)

= vm(~r l )

The constantA is chosen so that the eigenvector is normalized.

〈vm|vm〉 = ∑
l

〈vm|l〉〈l |vm〉 (22)

= ∑
l

Ae−i~km·~r l Aei~km·~r l

= A2N1N2N3

therefore letA= 1/
√

N1N2N3. We can now find the eigenvalues by substituting eq. 17 into eq. 16.

This gives

λm = 2
(

cos~km ·~a1 +cos~km ·~a2 +cos~km ·~a3−3
)

(23)

= 2

(
cos

2πm1

N1
+cos

2πm2

N2
+cos

2πm3

N3
−3

)

Now that the eigenvalue problem has been solved we can expressL andG =−L−1 in terms of the

eigenbasis. ForL we have

L = ∑
m

λm|vm〉〈vm| (24)

The matrix elements ofL are then

Lln = ∑
m

λm〈l |vm〉〈vm|n〉 (25)

=
1

N1N2N3
∑
m

λmei~km·(~r l−~rn)

It is not too difficult to show that this equation gives the same results as in eq. 9. ForG = −L−1

we have

G =−∑
m

|vm〉〈vm|
λm

(26)

and the matrix elements are

Gln =−∑
m

〈l |vm〉〈vm|n〉
λm

=− 1
N1N2N3

∑
m

ei~km·(~r l−~rn)

λm
(27)
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Note thatGln depends only on the difference~r l −~rn so thatG has a circulant matrix representation.

Let~rp =~r l −~rn then

~rp = (l1−n1)~a1 +(l2−n2)~a2 +(l3−n3)~a3 (28)

= p1~a1 + p2~a2 + p3~a3

and

~km ·~rp = 2π
m1p1

N1
+2π

m2p2

N2
+2π

m3p3

N3
(29)

Using this notation, eq. 27 becomes

Gln = G(~rp) =
1

N1N2N3

N1−1

∑
m1=0

N2−1

∑
m2=0

N3−1

∑
m3=0

e
i
2πm1p1

N1 e
i
2πm2p2

N2 e
i
2πm3p3

N3

2
(

3−cos2πm1
N1

−cos2πm2
N2

−cos2πm3
N3

) (30)

Eq. 30 gives the matrix elements of the lattice Green function of the DPE for a finite lattice with

periodic boundary conditions. Note that this is essentially a Fourier series expansion of the matrix

elements which is possible because of the periodic boundary conditions. For other boundary

conditions such asG(Ni~ai) = 0, the expansion would have to be in terms of a sine series.

We will now go from a finite lattice to an infinite lattice by lettingNi → ∞, i = 1,2,3. This

means going from the Fourier series representation of eq. 30 to a Fourier transform representation

of the matrix elements. In eq. 30 let

xi =
2πmi

Ni
(31)

Whenmi is incremented by 1 the change inxi is

4xi =
2π
Ni

or
1
Ni

=
4xi

2π
(32)

The summations in eq. 30 can then be written as

1
Ni

Ni−1

∑
mi=0

≡
2π(1− 1

Ni
)

∑
xi=0

4xi

2π
(33)

and in the limitNi → ∞ the summation becomes an integral.

1
2π

Z 2π

0
dxi (34)

For an infinite lattice eq. 30 then becomes

G(~rp) =
1

(2π)3

Z 2π

0

Z 2π

0

Z 2π

0

eix1p1eix2p2eix3p3

2(3−cosx1−cosx2−cosx3)
dx1dx2dx3 (35)

6



Note that the integrand has a period of2π in each of the variables so that the limits of integration

can be changed to the more symmetric

G(~rp) =
1

(2π)3

Z π

−π

Z π

−π

Z π

−π

eix1p1eix2p2eix3p3

2(3−cosx1−cosx2−cosx3)
dx1dx2dx3 (36)

The integral can be further simplified by looking at the parity properties of the integrand. Multi-

plying theeixi pi = cosxi pi + i sinxi pi factors and leaving out the resulting odd terms reduces the

integral to

G(p1, p2, p3) =
1

2π3

Z π

0

Z π

0

Z π

0

cosx1p1cosx2p2cosx3p3

3−cosx1−cosx2−cosx3
dx1dx2dx3 (37)

ClearlyG is a function only of the parametersp1, p2, andp3 and it is an even function of these

parameters.G is also symmetric under any permutation of the parameters. All the unique values

of G are therefore contained in the wedgep1≥ p2≥ p3≥ 0.

We will now derive a recurrence equation that the matrix elements ofG obey. By definition we

haveLG =−I which in the lattice basis is

∑
n
〈l |L|n〉〈n|G|m〉 = −〈l |m〉 (38)

∑
n

LlnGnm = −δ(l ,m)

∑
n

L(~r l −~rn)G(~rn−~rm) = −δ(l ,m)

Substituting in eq. 10 forLln gives

−6G(~r l −~rm)+
3

∑
i=1

[G(~r l +~ai−~rm)+G(~r l −~ai−~rm)] =−δ(l ,m) (39)

Now using the notation,~r l −~rm = (l1−m1)~a1 +(l2−m2)~a2 +(l3−m3)~a3 = p1~a1 + p2~a2 + p3~a3,

eq. 39 becomes

−6G(p1, p2, p3)+G(p1+1, p2, p3)+G(p1−1, p2, p3)+G(p1, p2+1, p3)+G(p1, p2−1, p3)+G(p1, p2, p3+1)+G(p1, p2, p3−1)=−δ(p1,0)δ(p2,0)δ(p3,0)

(40)

Eq. 40 simplifies considerably for some specific values ofp1, p2, andp3. In particular forp1 =

p2 = p3 = 0 we get

G(1,0,0) = G(0,0,0)− 1
6

(41)

Where the symmetry properties of G have been used, i.e.G(1,0,0) = G(−1,0,0) = G(0,1,0) =

G(0,−1,0) = G(0,0,1) = G(0,0,−1). Letting p1 = p2 = p3 = p in eq. 40, we have

2G(p, p, p) = G(p+1, p, p)+G(p, p, p−1) (42)

7



Letting p1 = p, p2 = p3 = 0 in eq. 40 gives

G(p+1,0,0) = 6G(p,0,0)−4G(p,1,0)−G(p−1,0,0) (43)

Letting p1 = p2 = p, p3 = 0 in eq. 40 gives

3G(p, p,0) = G(p+1, p,0)+G(p, p−1,0)+G(p, p,1) (44)

In general forp1 = l , p2 = m, p3 = n with l , m, andn not all equal to zero, we have

6G(l ,m,n)= G(l +1,m,n)+G(l−1,m,n)+G(l ,m+1,n)+G(l ,m−1,n)+G(l ,m,n+1)+G(l ,m,n−1)

(45)

Additional recursion equations were developed by Duffin and Shelly. These recursion equa-

tions, along with some of those given above and some relations due to Horiguchi and Morita,

allowed Glasser and Boersma to find an expression for the general matrix elementG(l ,m,n) that

involves knowing onlyG(0,0,0), which is given by the integral

G(0,0,0) =
1

2π3

Z π

0

Z π

0

Z π

0

dx1dx2dx3

3−cosx1−cosx2−cosx3
(46)

This integral was first evaluated by Watson in terms of complete elliptic integrals. It was then

shown by Glasser and Zucker to be expressible in terms of gamma functions as

G(0,0,0) =
√

6
96π3Γ

(
1
24

)
Γ

(
5
24

)
Γ

(
7
24

)
Γ

(
11
24

)
(47)

An identity due to Borwein and Zucker allows this to be simplified to

G(0,0,0) =
√

3−1
96π3 Γ2

(
1
24

)
Γ2

(
11
24

)
(48)

Joyce [8] has also developed some recursion equations that allowG(l ,m,n) to be calculated for

arbitrary values ofl ,m,n. He arrives at the same formula as Glasser and Boersma via a different

method and also derives an asymptotic formula forG(l ,m,n). In some very recent work, Joyce [9]

gives some formulas that allow the diagonal elements,G(n,n,n), to be calculated very accurately

for arbitrary values ofn. He also gives asymptotic formulas forG(n,n,n).

III. TWO DIMENSIONAL DISCRETE POISSON EQUATION

The same procedure given above can be used to find the lattice Green function for the two

dimensional Poisson equation. In this case the lattice vectors are

~rn = n1~a1 +n2~a2 (49)
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The matrix elements of the lattice Laplacian are

Lln =





−4δ(~r l ,~rn)

1 if |~rn−~r l |= a

0 otherwise

(50)

Which can also be expressed as

Lln =−4δ(~r l ,~rn)+δ(~r l +~a1,~rn)+δ(~r l −~a1,~rn)+δ(~r l +~a2,~rn)+δ(~r l −~a2,~rn) (51)

The eigenvector expansion of the lattice Laplacian matrix elements are

Lln =
1

N1N2
∑
m

λmei~km·(~r l−~rn) (52)

~km =
m1

N1

~b1 +
m2

N2

~b2 mi = integer (53)

λm = 2
(

cos~km ·~a1 +cos~km ·~a2−2
)

(54)

= 2

(
cos

2πm1

N1
+cos

2πm2

N2
−2

)

The matrix elements of the lattice Green function are expanded in the eigenbasis as

Gln =− 1
N1N2

∑
m

ei~km·(~r l−~rn)

λm
(55)

which if we let~rp =~r l −~rn, can be expressed as

Gln = G(~rp) =
1

N1N2

N1−1

∑
m1=0

N2−1

∑
m2=0

e
i
2πm1p1

N1 e
i
2πm2p2

N2

2
(

2−cos2πm1
N1

−cos2πm2
N2

) (56)

For the infinite lattice this becomes

G(~rp) = G(p1, p2) =
1

2π2

Z π

0

Z π

0

cosx1p1cosx2p2

2−cosx1−cosx2
dx1dx2 (57)

G is an even function of the parametersp1and p2, and it is symmetric under any permutation of

the parameters. All the unique values ofG are therefore contained in the wedgep1≥ p2≥ 0.

There is one problem with eq. 57. The integral is divergent for all values ofp1 andp2. We can

fix this by using the shifted Green function.

g(p1, p2) = G(0,0)−G(p1, p2) =
1

2π2

Z π

0

Z π

0

1−cosx1p1cosx2p2

2−cosx1−cosx2
dx1dx2 (58)

9



The integral now exists for all values ofp1 and p2. Using g(p1, p2) instead ofG(p1, p2) will

provide a solution to the DPE as long as the sum of the source terms,f (~rn), over all the lattice

sites is equal to zero. To demonstrate this, first note that the solution to the DPE in terms ofG is

given by

φ(~r l ) =−∑
n

Gln f (~rn) (59)

Now if we have

∑
n

f (~rn) = 0 (60)

then eq. 59 can also be written as

φ(~r l ) = ∑
n

(Gll −Gln) f (~rn) (61)

whereGll = G(~r l −~r l ) = G(0,0), Gln = G(~r l −~rn) = G(p1, p2) andGll −Gln = gln. The solution

to the DPE in terms of the shifted Green function is then

φ(~r l ) = ∑
n

gln f (~rn) (62)

wheregln = g(~r l −~rn) = g(p1, p2) = G(0,0)−G(p1, p2).

From the above discussion, you can see that in an unbounded two dimensional space or lattice

the DPE is only solvable if the sources add up to zero. A physical example of this is in two di-

mensional electrostatics. The charge units in two dimensional electrostatics are actually parallel,

infinite line charges embedded in a three dimensional space. For a single line charge, the potential

at any finite distance from the line will be infinite. For two lines of opposite charge the potential is

finite in the space surrounding the lines. Note that we are assuming an unbounded space with the

zero point potential at infinity. Another example comes from the theory of random walks. In one

and two dimensions a random walker is guarranteed to eventually return to its starting position,

while in three dimensions it may never do so. To see how this is related to the DPE, see the excel-

lent book by Doyle and Snell [10] on random walks in electrical networks. For another example

see Cserti’s paper [4] on using the lattice Green function to calculate the resistance between two

points in an infinite network of resistors.

We will now present some recurrence equations that the matrix elements of the Green function

obey. As in the three dimensional case these can easily be found from the defining relationLG =

−I . This gives the general recurrence

−4G(p1, p2)+G(p1+1, p2)+G(p1−1, p2)+G(p1, p2+1)+G(p1, p2−1) =−δ(p1,0)δ(p2,0)

(63)
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For p1 = p2 = 0 we have

G(0,0)−G(1,0) =
1
4

(64)

For p1 = p 6= 0, p2 = 0 we have

4G(p,0) = G(p+1,0)+G(p−1,0)+2G(p,1) (65)

For p1 = p2 = p 6= 0 we have

2G(p, p) = G(p+1, p)+G(p, p−1) (66)

And in general forp1 = l 6= 0 andp2 = m 6= 0 we have

4G(l ,m) = G(l +1,m)+G(l −1,m)+G(l ,m+1)+G(l ,m−1) (67)

An additional recurrence equation for the diagonal elements is [11]

(2n+1)G(n+1,n+1)−4nG(n,n)+(2n−1)G(n−1,n−1) = 0 (68)

Since the coefficients in each of these equations adds to zero you can see that the shifted Green

function,g(p1, p2) = G(0,0)−G(p1, p2) must obey the same recurrence equations. These equa-

tions forg are listed below

g(1,0) =
1
4

(69)

4g(p,0) = g(p+1,0)+g(p−1,0)+2g(p,1) (70)

2g(p, p) = g(p+1, p)+g(p, p−1) (71)

4g(l ,m) = g(l +1,m)+g(l −1,m)+g(l ,m+1)+g(l ,m−1) (72)

(2n+1)g(n+1,n+1)−4ng(n,n)+(2n−1)g(n−1,n−1) = 0 (73)
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